Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Neutron diffraction studies of the $1: 1$ and $2: 1$ cocrystals of benzene-1,2,4,5tetracarboxylic acid and 4,4'-bipyridine

John A. Cowan, ${ }^{\text {a }} \ddagger \ddagger$ Judith A. K. Howard, ${ }^{\text {a }}$ Sax A. Mason, ${ }^{\text {b }}$ Garry J. McIntyre, ${ }^{\text {b }}$ Samuel M.-F. Lo, ${ }^{\text {c }}$ Toby Mak, ${ }^{\text {c }}$
Stephen S.-Y. Chui, ${ }^{\text {c }}$ Jiwen Cai, ${ }^{\text {c }}$ John A. Cha ${ }^{\text {c }}$ and lan D. Williams ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, University of Durham, Durham DH1 3LE, England, ${ }^{\mathbf{b}}$ Institut Laue Langevin, 6 Rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9, France, and ${ }^{\mathbf{c}}$ Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China Correspondence e-mail: j.a.cowan@dl.ac.uk

Received 12 January 2006
Accepted 1 February 2006
Online 11 March 2006
The 1:1 and 2:1 cocrystals of benzene-1,2,4,5-tetracarboxylic acid (BTA) and 4,4'-bipyridine (BPY) have been studied using neutron diffraction at 215 and 20 K , respectively. BTA and BPY crystallize in a 1:1 ratio with 1.8 molecules of water, viz. 4,4'-bipyridinium 2,5-dicarboxybenzene-1,4-dicarboxylate 1.8hydrate, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}{ }^{2-} \cdot 1.8 \mathrm{H}_{2} \mathrm{O}$, (I), in the space group $P \overline{1}$, with both BTA and BPY lying on inversion centres. BTA and BPY crystallize in a 2:1 ratio, viz. 4, 4^{\prime}-bipyridinium bis(2,4,5-tricarboxybenzoate), $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{8}^{-}$, (II), in the space group Cc. The crystal structure of the $1: 1$ cocrystal contains one short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{N} \cdots \mathrm{O}=$ 2.6047 (19) \AA] and one intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.423(3) \AA$]. The crystal structure of the 2:1 cocrystal contains two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{O}=$ 2.639 (3) and 2.674 (2) \AA] , and two intramolecular [$\mathrm{O} \cdots \mathrm{O}=$ 2.404 (3) and 2.420 (3) \AA] and four strong intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{O} \cdots \mathrm{O}=2.613$ (3), 2.718 (3), 2.628 (3) and 2.739 (3) \AA].

Comment

As part of an investigation into $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Cowan et al., 2001a,b; Cowan, Howard, Leech et al., 2001; Cowan, Howard, Leech \& Williams, 2001), we have produced cocrystals of benzene-1,2,4,5-tetracarboxylic acid (BTA) and 4,4'-bipyridine (BPY). In the short $\mathrm{N} \cdot$. O hydrogen bond observed in the cocrystal of 4-methylpyridine and pentachlorophenol (Steiner et al., 2001), the H atom lies closer to the N atom at 20 K , and migrates across the

[^0]hydrogen bond to lie closer to the O atom at 296 K . We have recently (Cowan et al., 2003) observed an identical phenomenon of H -atom migration in one of the two short $\mathrm{N} \cdots \mathrm{O}$ hydrogen bonds in the 1:2 cocrystal of BTA and BPY, whose structure was first described by Lough et al. (2000). It was speculated that similar novel behaviour may be observed in the $\mathrm{N} \cdots \mathrm{O}$ hydrogen bonds of the $2: 1$ and $1: 1$ cocrystals, the structures of which have recently been reported (Zhu et al., 2003; Ruiz-Pérez et al., 2004; Fabelo et al., 2005).

BTA and BPY crystallize in a 1:1 ratio as a molecular salt, (I), with two molecules of water, in space group $P \overline{1}$. The BTA and BPY molecules are linked by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form infinite one-dimensional chains. The disordered water molecules lie in a channel along the a axis between parallel chains of BTA and BPY molecules (Fig. 1). The structure of (I) has been discussed previously by Fabelo et al. (2005).

A very short intramolecular hydrogen bond is formed [$\mathrm{O} 11-\mathrm{H} 1 \cdots \mathrm{O} 21$, with $\mathrm{O} \cdots \mathrm{O}=2.423$ (3) \AA] between the carboxylic acid group and the carboxylate group. Even though the $\mathrm{O} \cdots \mathrm{O}$ separation is very short for an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, the H atom is asymmetrically positioned. There is no evidence of disorder in the difference Fourier map or in the anisotropic displacement parameters of the H atom (Fig. 2).

A strong charge-assisted $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond [$\mathrm{N} 4-$ $\mathrm{H} 4 \cdots \mathrm{O} 22$, with $\mathrm{N} \cdots \mathrm{O}=2.6047$ (19) \AA] (Gilli et al., 1994) is formed between the BTA and BPY molecules. Although this is chemically very similar to the short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond in the $2: 1$ cocrystal $[\mathrm{N} \cdots \mathrm{O}=2.521$ (2) \AA; Lough et al.,

Figure 1
A packing diagram for (I), viewed perpendicular to the hydrogen-bonded chains. Hydrogen bonds are indicated by dashed lines. The disordered water molecules are visible in the large channel.

organic compounds

2000], it is much longer. Surprisingly, the longer hydrogen bond is accompanied by a parallel $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond ($\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 21$) forming a commonly observed motif, while the shorter hydrogen bond has no parallel $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond.

The observed deterioration of the crystal below 200 K meant we could not verify the existence or absence of H -atom migration. In the observed cases, H -atom migration has been from the O atom at room temperature to the N atom at low temperature. The H -atom position at $215 \mathrm{~K}[1.102$ (3) \AA from the N atom] suggests that significant H -atom migration does not occur. To observe significant H -atom migration, we would expect the $\mathrm{N}-\mathrm{H}$ distance to be 1.2-1.3 \AA at 215 K .

The water molecules were modelled as disordered over four positions, and were refined with the $\mathrm{O}-\mathrm{H}$ bond lengths and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle restrained. Most of the residual nuclear density lies around the water molecules and the model only approximates the true disorder. The occupancy factors of the water molecules were refined and then fixed so that the isotropic displacement parameters were physically reasonable. It was not sensible to refine anisotropic displacement parameters for any of the atoms in the water molecules. The overall occupancy summed to 1.8 water molecules per unit cell.

BTA and BPY crystallize in a 2:1 ratio as a molecular salt, (II), with the formula $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{8}{ }^{-}$. The BTA molecules are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in a two-dimensional mesh. The BPY molecules thread through gaps in the mesh and connect the layers together via N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 3). The structure of (II) has been discussed previously by Zhu et al. (2003) and Ruiz-Pérez et al. (2004).

Our structure of (II) disagrees with both published structures. The structure of Zhu et al. (2003) [Cambridge Structural Database (CSD; Allen, 2002) refcode IRETII] was refined in the space group $C 2 / c$ with one BTA molecule and one half of a BPY molecule in the asymmetric unit. Refinement of the lowtemperature structure of (II) in $C 2 / c$ results in unacceptable anisotropic displacement parameters and the refined R factor was only $\sim 10 \%$. It is possible that the $C 2 / c$ phase occurs at room temperature, or that different crystallization conditions
produce a polymorph. The heavy-atom structure and space group of Ruiz-Pérez et al. (2004) (CSD refcode IRETII01) agree with our structure. However, their placement of the H atoms is incorrect, including three H atoms curiously attached to the carbonyl O atoms in the carboxylic acid groups.

A short intramolecular hydrogen bond is formed between a carboxylate group and the adjacent carboxylic acid group in both BTA molecules. Again, as in (I), despite the very short $\mathrm{O} \cdots \mathrm{O}$ separation for an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, the H atom is positioned asymmetrically. There is no evidence of disorder in the difference Fourier map or in the isotropic displacement parameters of the H atom (Fig. 4). There are two relatively long $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ charge-assisted hydrogen bonds, both with ordered H -atom positions close to the N atoms. No H -atom migration is expected, for the same reasons as stated for (I). Four short but unremarkable $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are also formed, linking the BTA molecules into twodimensional meshes. Full hydrogen-bond parameters are listed in Table 2.

In both (I) and (II), three independent short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds are formed between a carboxylic acid group and an adjacent carboxylate group attached to a benzene ring. These are among the shortest hydrogen bonds studied by neutron diffraction. In similar short intramolecular hydrogen bonds studied by neutron diffraction, the H atom is rarely found to be equidistant from the O atoms (Wilson, 2000). In the crystal structure of pyri-dine-2,3-dicarboxylic acid, a short asymmetric intramolecular hydrogen bond is formed and the asymmetry is ascribed to the N atom in the pyridyl ring (Kvick et al., 1974; Takusagawa \& Koetzle, 1979). Similar short intramolecular hydrogen bonds between carboxylic acid and carboxylate groups have been studied in detail by neutron diffraction and ab initio calculations in maleate ions (Hsu \& Schlemper, 1980; Olovsson \& Olovsson, 1984; Vanhouteghem et al., 1987; Wilson et al., 2003), and the asymmetry in the H -atom position, when it occurs, is ascribed to intermolecular effects. In imidazolium hydrogen maleate (Sakhawat Hussain et al., 1980), the H atom is found to be centred, but on deuteration the D atom is found to be asymmetrically placed. In the structure of lithium

Figure 2
A plot of (I) from the 215 K neutron data. Displacement ellipsoids are drawn at the 50% probability level. The heavy dashed lines indicate strong hydrogen bonds and the thin dashed line indicates a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. [Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-x-1,-y, 1-z$.]
hydrogen phthalate (Küppers et al., 1985), there are two phthalate ions forming intramolecular hydrogen bonds, one of which is symmetrical while the other is asymmetrical with respect to the H -atom position.

The asymmetry in the intramolecular hydrogen bonds in structures (I) and (II) is clearly caused by the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The asymmetry in the hydrogen bond is also evident in the $\mathrm{C}-\mathrm{O}$ distances in the carboxylate/ carboxylic acid groups, which are, in (I), characteristic of a carboxylic acid group and a carboxylate group. The carboxylate group acts as the acceptor for both intra- and intermolecular hydrogen bonds. In the cocrystal of BTA and guanidinium (Sun et al., 2002), the H atom was found in the centre of the intramolecular hydrogen bond, although in that case the carboxylate/carboxylic acid groups are both acceptors for similar intermolecular hydrogen bonds and the $\mathrm{C}-\mathrm{O}$ distances are hybrid between the carboxylate/carboxylic acid cases.

Figure 3
A packing diagram for (II), viewed along the c direction. The BPY molecules are shown with hollow bonds and the BTA molecules are shown with solid bonds. H atoms have been omitted for clarity. The twodimensional BTA networks are parallel to the page and the BPY molecules thread through the gaps.

Figure 4
A plot of (II) from the 20 K neutron data. Displacement ellipsoids are drawn at the 50% probability level.

Aromatic interactions between delocalized π-electron systems in crystal structures have long been recognized (Robertson, 1951) and are characterized by perpendicular distances of $\sim 3.4 \AA$ between aromatic rings. Hunter et al. (2002) explain $\pi-\pi$ interactions by treating the π-electron system and the σ system, in which they include the nuclei and the σ electrons, as separate, and by considering the electrostatic interactions between them.

In structure (I), the BTA molecules form π-stacked columns. In (II), there are no conventional $\pi-\pi$ interactions; the BTA molecules do not stack with the delocalized aromatic interactions 'face-to-face', but with the aromatic rings adjacent to the ring formed by the intramolecular hydrogen bonds. The most obvious example of a similar interaction is in the crystal structure of diphthalimidodiethylamine phthalic acid hydrate (Barrett et al., 1998), in which the phthalic acid molecule is pincered between the benzene groups in the the U -shaped diphthalimidodiethylamine. The motif also occurs in cocrystals of BTA and 4-methylpyridine (Biradha \& Zaworotko, 1998; centre-centre $=3.538 \AA$), phenylethylammonium hydrogen phthalate (Kozma et al., 1994; centre-centre $=3.649 \AA$) and $\operatorname{bis}(p$-dimethylaminophenyl)phenylcarbenium hydrogen phthalate phthalic acid (Mitchell et al., 1996; centre-centre = $3.713 \AA$). This interaction could be interpreted in some cases as a $\pi-\pi$ interaction with a large offset between the rings. The description of $\pi-\pi$ interactions as electrostatic interactions would include those interactions in which the attraction is between the σ-electron system of the benzene ring and the charges in the polar $\mathrm{C}-\mathrm{O}$ bonds in the hydrogen-bonded ring. Further examples, with evidence that this motif would form in preference to other possible motifs, are required to determine if these are true intermolecular interactions or simply geometrical coincidences caused by other interactions.

One of the main aims of this study was to obtain neutron diffraction data on short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} / \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The strength of the hydrogen bonds is apparently very sensitive to the intermolecular environment. There is a variation in the $\mathrm{N} \cdots \mathrm{O}$ distances between 2.5220 (17) and 2.674 (2) \AA in the hydrogen bonds formed between BTA and BPY in the three cocrystals of these components.

No hydrogen bonds as short as those in the $2: 1$ cocrystal (Lough et al., 2000) are observed in (I) and (II), and therefore we do not expect H -atom migration. However, in the cocrystal of BTA and 1,7-phenanthroline (Arora \& Pedireddi, 2003), there is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with an $\mathrm{N} \cdots \mathrm{O}$ distance of 2.562 (2) \AA and an $\mathrm{N}-\mathrm{H}$ distance of 1.31 (3) \AA at room temperature. Although this is longer than the values of $2.5220(17) \AA$ in the $2: 1$ cocrystal and $2.506(3) \AA$ in 4 methylpyridine and pentachlorophenol (Steiner et al., 2001), it is likely that H -atom migration may be exhibited upon cooling to low temperature. Neutron diffraction is required to verify this prediction.

Experimental

Cocrystals of BTA and BPY in a 1:1 ratio [compound (I)] were formed in $\sim 80 \%$ yield by heating BTA and BPY in a $1: 1$ ratio (1:1 mmol) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ for 2 d at 453 K in a 23 ml Teflon-lined Parr

organic compounds

vessel under autogenous pressure. Phase purity was established by powder X-ray diffraction and elemental analysis. Typical crystal size was $1-2 \mathrm{~mm}^{3}$. Larger specimens of up to $5 \mathrm{~mm}^{3}$ could be obtained by cyclic heating and cooling of the bombs between 373 and 453 K . An identical procedure, using different ratios of the constituents, was used to produce 2:1 cocrystals [compound (II)] of similar size.

Compound (I)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} . \mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{8}{ }^{2-} \cdot 1.8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=442.40$
Triclinic, $P \overline{1}$
$a=3.7747(2) \AA$
$b=10.8587(5) \AA$
$c=11.9519(6) \AA$
$\alpha=99.626(3)^{\circ}$
$\beta=97.726(3)^{\circ}$
$\gamma=95.515(3)^{\circ}$
$V=475.07(4) \AA^{\circ}$
$Z=1$

$$
\begin{aligned}
& D_{x}=1.546 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Neutron radiation } \\
& \lambda=1.302 \AA \\
& \text { Cell parameters from } 1196 \\
& \text { reflections } \\
& \theta=5-55^{\circ} \\
& \mu=0.16 \mathrm{~mm}^{-1} \\
& T=215(2) \mathrm{K} \\
& \text { Needle, brown } \\
& 2.0 \times 0.8 \times 0.5 \mathrm{~mm}
\end{aligned}
$$

Data collection

D19 diffractometer, ILL
ω scans
Absorption correction: integration
(D19ABS; Matthewman et al., 1982)
$T_{\text {min }}=0.861, T_{\text {max }}=0.933$
1983 measured reflections
1654 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
1654 reflections
249 parameters
H atoms: see below

Data collection

D19 diffractometer, ILL
ω scans
Absorption correction: Gaussian
(D19ABS; Matthewman et al.,
1982)
$T_{\text {min }}=0.841, T_{\text {max }}=0.891$
3741 measured reflections
2647 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.048$
$S=1.12$
2647 reflections
615 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0186 P)^{2}\right.$
$+12.8939 P$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

2628 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=55.2^{\circ}$
$h=-4 \rightarrow 14$
$k=-19 \rightarrow 13$
$l=-19 \rightarrow 17$
2 standard reflections every 100 reflections intensity decay: none
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{fm} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.46 \mathrm{fm}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.000155 (17)
Absolute structure: Flack (1983),
with 92 Friedel pairs
Flack parameter: 0 (10)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 11$	1.079 (5)	1.333 (5)	2.404 (3)	172.6 (4)
$\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 13$	1.076 (5)	1.348 (5)	2.420 (3)	173.2 (4)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 12{ }^{\text {i }}$	1.049 (4)	1.635 (4)	2.674 (2)	169.5 (4)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 14^{\text {ii }}$	1.050 (4)	1.665 (4)	2.639 (2)	151.9 (3)
O42-H42 . ${ }^{\text {O }} 11^{\text {iii }}$	1.011 (5)	1.612 (5)	2.613 (3)	169.8 (4)
$\mathrm{O} 52-\mathrm{H} 52 \cdots \mathrm{O} 21^{\text {iv }}$	1.004 (4)	1.717 (4)	2.718 (3)	174.7 (4)
O44-H44...O13 ${ }^{\text {iv }}$	1.007 (4)	1.637 (4)	2.629 (3)	167.2 (4)
$\mathrm{O} 54-\mathrm{H} 54 \cdots \mathrm{O} 23{ }^{\text {iii }}$	1.004 (5)	1.740 (5)	2.739 (3)	173.2 (4)
C31-H31 \cdots O24 ${ }^{\text {v }}$	1.085 (4)	2.228 (5)	3.191 (3)	146.7 (4)
C34-H34 . ${ }^{\text {O }} 52^{\text {iii }}$	1.080 (4)	2.482 (5)	3.414 (3)	143.9 (4)
C34-H34...O22 ${ }^{\text {v }}$	1.080 (4)	2.467 (4)	3.155 (3)	120.5 (3)
	1.071 (4)	2.549 (5)	3.154 (3)	115.0 (3)
C35-H35 . ${ }^{\text {O } 433^{\text {vi }}}$	1.071 (4)	2.494 (4)	3.042 (3)	110.7 (3)
C36-H36 \cdots O51	1.082 (4)	2.364 (5)	3.219 (3)	134.8 (3)
C36-H36 $\cdots{ }^{\text {O }} 21^{\text {iv }}$	1.082 (4)	2.414 (5)	3.134 (3)	122.8 (3)
C37-H37 . O 41	1.083 (4)	2.193 (5)	3.140 (3)	144.9 (4)
C38-H38 . O 41	1.081 (4)	2.351 (4)	3.420 (3)	169.7 (3)
C38-H38 . O 43	1.081 (4)	2.564 (4)	3.044 (3)	106.0 (3)
C39-H39 . . O23 ${ }^{\text {iii }}$	1.082 (4)	2.592 (5)	3.108 (3)	108.4 (3)
C39-H39 . . O 43	1.082 (4)	2.493 (5)	2.994 (3)	107.0 (3)
C39-H39 . . O53	1.082 (4)	2.692 (5)	3.739 (3)	162.9 (4)

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (iv) $x-\frac{1}{2}, y+\frac{1}{2}, z ;$ (v) $x, y+1, z ;$ (vi) $x,-y+1, z+\frac{1}{2}$.

X-ray diffraction experiments were performed prior to the neutron experiments to verify the identity of the crystals. The initial structural models for the neutron refinements were taken from our X-ray diffraction results. Neutron scattering factors were taken from Sears (1992). All H atoms were refined with anisotropic displacement parameters except for those in the disordered water molecules in (I).

For both compounds, data collection: MAD (Barthelemy et al., 1984); cell refinement: RAFD19 (Filhol, 1998); data reduction: RETREAT (Wilkinson et al., 1988); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

JAC thanks the ILL and EPSRC for PhD funding. JAKH thanks the EPSRC for a Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1884). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Arora, K. K. \& Pedireddi, V. R. (2003). J. Org. Chem. 24, 9177-9185.
Barrett, D. M. Y., Kahwa, I. A., Raduchel, B., White, A. J. P. \& Williams, D. J. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1851-1856.

Barthelemy, A., Filhol, A., Rice, P. G., Allibon, J. R. \& Turfat, C. (1984). MAD. Institut Laue-Langevin, Grenoble, France.
Biradha, K. \& Zaworotko, M. J. (1998). Cryst. Eng. 1, 67-78.
Cowan, J. A., Howard, J. A. K. \& Leech, M. A. (2001a). Acta Cryst. C57, 302303.

Cowan, J. A., Howard, J. A. K. \& Leech, M. A. (2001b). Acta Cryst. C57, 11961198.

Cowan, J. A., Howard, J. A. K., Leech, M. A., Puschmann, H. \& Williams, I. D. (2001). Acta Cryst. C57, 1194-1195.

Cowan, J. A., Howard, J. A. K., Leech, M. A. \& Williams, I. D. (2001). Acta Cryst. E57, o563-o565.
Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. \& Williams, I. D. (2003). Acta Cryst. B59, 794-801.

Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. \& Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163-1167.
Filhol, A. (1998). RAFD19. Institut Laue-Langevin, Grenoble, France.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilli, P., Bertolasi, V., Ferritti, V. \& Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.
Hsu, B. \& Schlemper, E. O. (1980). Acta Cryst. B36, 3017-3023.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Kozma, D., Bocskei, Z., Simon, K. \& Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883-1886.
Küppers, H., Takusagawa, F. \& Koetzle, T. F. (1985). J. Chem. Phys. 82, 56365647.

Kvick, Å., Koetzle, T. F., Thomas, R. \& Takusagawa, F. (1974). J. Chem. Phys. 60, 3866-3874.
Lough, A. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 261-272.
Matthewman, J. C., Thompson, P. \& Brown, P. J. (1982). J. Appl. Cryst. 15, 167173.

Mitchell, C. A., Lovell, S., Thomas, K., Savickas, P. \& Kahr, B. (1996). Angew. Chem. Int. Ed. Engl. 35, 1021-1023.
Olovsson, G. \& Olovsson, I. (1984). Acta Cryst. C40, 1521-1526.
Robertson, J. M. (1951). Proc. R. Soc. London Ser. A, 207, 101-110.
Ruiz-Pérez, C., Lorenzo-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gilli, P. \& Julve, J. (2004). Cryst. Growth Des. 4, 57-61.

Sakhawat Hussain, M., Schlemper, E. O. \& Fair, C. K. (1980). Acta Cryst. B36, 1104-1108.
Sears, V. F. (1992). Neutron News, 3(3), 26-37.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Steiner, T., Majerz, I. \& Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 26512654.

Sun, Y.-Q., Zhang, J. \& Yang, G.-Y. (2002). Acta Cryst. E58, o904o906.
Takusagawa, F. \& Koetzle, T. F. (1979). Acta Cryst. B35, 2126-2135.
Vanhouteghem, F., Lenstra, A. T. H. \& Schweiss, P. (1987). Acta Cryst. B43, 523-528.
Wilkinson, C., Khamis, H. W., Stansfield, R. F. D. \& McIntyre, G. J. (1988). J. Appl. Cryst. 21, 471-478.
Wilson, C. C. (2000). Single Crystal Neutron Diffraction From Molecular Materials. Singapore: World Scientific Publishing Company.
Wilson, C. C., Thomas, L. H. \& Morrison, C. A. (2003). Chem. Phys. Lett. 381, 102-108.
Zhu, N.-W., Zhang, R.-Q. \& Sun, T.-H. (2003). Z. Kristallogr. 218, 341-342.

[^0]: \ddagger Present address: Synchrotron Radiation Department, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England.

